
Ares: Triggering Payload of Evasive Android Malware
Luciano Bello
IBM Research

Yorktown Heights, New York, USA
luciano.bello@ibm.com

Marco Pistoia
IBM Research

Yorktown Heights, New York, USA
pistoia@us.ibm.com

ABSTRACT

With the emergence of mobile application markets, there has been
a dramatic increase in mobile malware. Mobile platform providers
are constantly creating and refining their malware-detection tech-
niques, including static analysis and behavioral monitoring. The
goal of malware writers is to hide the malware payload from those
analyzers. In parallel, security analysts want to quickly detect if
any software is malware in order to prevent harm to users. This
confrontation is pushing malware writers to develop new evasion
techniques that prevent their malware from being detected or mak-
ing analysis harder.

This paper describes Ares, a system built on top of an existing
behavioral analysis, based on static information-flow analysis, bi-
nary instrumentation, and multiexecution analysis, to detect and
bypass many common evasive techniques used by mobile malware.
Additionally, this paper presents our implementation of Ares, and
shows that, when run against real-world software, Ares is able to
reveal previously unknown malicious components. We also devel-
oped a test suite for evasion detection techniques: Evadroid, which
we have made fully available to other researchers.
ACM Reference Format:

Luciano Bello and Marco Pistoia. 2018. Ares: Triggering Payload of Eva-
sive Android Malware. In MOBILESoft ’18: MOBILESoft ’18: 5th IEEE/ACM
International Conference on Mobile Software Engineering and Systems , May
27–28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3197231.3197239

1 INTRODUCTION

Detecting malware in the mobile ecosystem is crucial and challeng-
ing at the same time. Platform vendors need to protect their users,
especially in the context of open app markets, in which apps are
provided by third parties. Much of the success of a mobile platform
depends on the quality and quantity of third party apps offered
in its market. It is in the interest of a vendor to protect its market
from malicious apps, usually referred to asmalware. For this reason,
both Google Play and the Apple App Store require that any app
distributed to consumers undergo a series of checks—including
code inspection, static analysis, sandboxing and testing—in order
to detect any security threat. Despite these efforts, attackers have
found multiple ways to bypass the security checks performed by
the platform vendors (see, e.g., [31] and [22] for the Apple App
Store and Google Play, respectively).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5712-8/18/05. . . $15.00
https://doi.org/10.1145/3197231.3197239

In general, malware is said to be evasive if it implements tech-
niques that avoid the execution of malicious behavior—the pay-
load—under certain circumstances in order to bypass detection or
to make the analysis of the malware harder. One of the techniques
that malware writers use to evade malware detection is environ-
ment fingerprinting [21, 23, 30]: evasive malware does not behave
maliciously if, based on characteristics of the running environment,
it detects that is being monitored.

Evasive techniques have already been observed in the wild for
years in the x86 platforms (traditional personal computers, usually
running the Microsoft Windows operating system). A large body
of research has been dedicated to combating them [3, 11, 12, 16, 18].
As for the mobile setting, in 2011 Zhou and Jiang identified and
analyzed AnserverBot—one of the most sophisticated malwares
infecting Android devices [40]. By using dynamic code loading,
data obfuscation, self-signature verification and encryption, this bot
program was particularly good at evading analysis and detection.
According to Zhou and Jiang, “the combination of these techniques
significantly raises the bar for reverse engineering analysis.” Since
then, the presence of evasive malicious code should be accounted
for when attempting to detect malware.

From the attacker’s perspective, writing evasive malware is not
just necessary to enter the appmarket, but also a way to increase the
time window in which the attack is effective. Executing the payload
immediately might, for example, expose the Command and Control
infrastructure (C&C) or the server where personal information is
leaked. Uncovering the attacker’s infrastructure allows firewalling
and might lead to the attacking organization.

In this paper, we present a system that extends an existing be-
havioral dynamic analysis to improve its chances for triggering the
payload of evasive Android malware. The system uses information-
flow analysis to detect possible evasion points. In order to force the
execution of otherwise-non-taken branches, it instruments multiple
copies of the malware. The different alternative copies of the app
flip different combination branches, which are executed in a given
monitored environment. This environment creates footprint logs
of various executions that are used to feed back into the system. To
test the system, we implemented Ares, an instantiation of the sug-
gested approach with a simple behavioral analysis that compares
execution traces in order to expose the payload. We tested Ares
with real-world malware that is known to be evasive to explore its
practicability. In addition, we created a set of tests to validate our
approach and make it comparable to future alternatives.

In summary, this work makes the following contributions:
A system to trigger the payload in evasive mobile mal-

ware. Given an existing dynamic behavioral analysis of mobile
apps, the system presented in this papers extends it with the goal
of exposing hidden behavior without involving complicated and
expensive reverse-engineering processes.

An implementation and evaluation of the system. In or-
der to evaluate our system, we implemented it by developing and
combining the necessary components to analyze, instrument, run,

https://doi.org/10.1145/3197231.3197239
https://doi.org/10.1145/3197231.3197239

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Luciano Bello and Marco Pistoia

and monitor Android application packages. We called this imple-
mentation Ares and we made it fully available for the sake of
reproducibility. We evaluated the presented approach with Ares
on 10 well-known real evasive malware families. In 9 of the cases,
the payload was exposed totally or partially. The evaluation shows
that the approach is feasible and practical.

The Evadroid test suite. As part of the development of the
Ares framework, we created 22 apps that exhibit evasive behavior.
Those minimal apps implement evasive techniques and have been
made part of a test suite that is public to use and can be extended
by others.

The rest of this paper is organized as follows: Section 2 presents
a description of the system including a discussion on optimizations
and efficiency improvements. Section 3 illustrates the implemen-
tation details of Ares and its evaluation against our test suite,
Evadroid, as well as the real-world malware. We discuss some
known limitations in Section 4. Section 5 presents related work.
Finally, Section 6 concludes the paper with a short discussion of
further work.

2 DESCRIPTION OF THE SYSTEM

Consider a hypothetical evasive malware that connects to a C&C
for receiving commands as part of a botnet. Keeping the C&C host-
name hidden from security analysts is crucial in order to increase
the effectiveness of the malware. Some malware hide the hostname
by enciphering the server address or obfuscating the code that
performs the connection. In addition, in order to avoid giving away
the hostname during behavioral analysis, malware might only try to
connect when android/telephony/TelephonyManager.getDev
iceId() returns something different from 0000000000000, since
it is well-known that this device ID is used by many emulators.

On the other side, the goal of a malware analyst is to trigger the
payload of evasive malware in a controlled environment in order
to learn more about it. The evasive payload is the malicious or
unexpected behavior (in the example, the connection to the C&C)
that is only executed under certain conditions (in the example,
when the device ID is not 0000000000000), presumably for evading
purposes.

The goal of the system proposed by this paper is to help the
analyzer to trigger the payload of possibly evasive malware. For
that reason, we start by characterizing evasion in malware. The
most commonly evasive code follows the pattern in Figure 1.

1: fp ← FingerPrinting();
2: if not fp == "reference value" then
3: (malicious behavior)
4: end if

5: (innocuous behavior)

Figure 1: Evasive Pattern

The execution of the mali-
cious behavior depends on the
result of FingerPrinting() in
line 1. Broadly speaking, this
function can be any mean to
sense the environment. It can be
a constant fetch (like in the case
of the device ID) as well as the
date, the battery status, or infor-

mation on the movement sensors, among others. In general, we call
this kind of sensing call fingerprinting source, or FS for short. In this
large meaning, an FS returns a value that gives some information
about the conditions under which the malware is running and it
can be used for evading purposes.

At line 2, the FS is checked, and a decision branch is opened
based on it. A priori, it is not possible to be sure that the value
returned by the FS call is used for evading, so we call the branching

point Evasion Point Candidate (EPC). In this example, the true-side
branch executes the malicious behavior, called payload, at line 3.

2.1 General Description

The objective is to expose the malware payload by executing it in
a monitored environment. For that, we split the general approach
into 3 stages:

Stage 1 - Finding EPCs. As previously defined, finding an EPC
is a data-flow dependency problem usually tackled by information-
flow analyses [26]. A typical information-flow analysis uses the
concepts of sources and sinks. The analysis detects if there is data
originated in sources that is consumed by any sink. In the particular
case of evasion scenarios, FS elements are sources and the branch-
ing conditions as sinks. That is, if a condition used in a branch
depends on data from one or more FSs, we consider that point an
EPC. This approach was already explored by previous work in the
context of JavaScript malware [14] with its own set of challenges.
For this stage, and taking into account the specificities of our An-
droid scenario, we use a static information-flow analyzer for Java
bytecode to find EPCs.

Given a malware candidate and a list of FSs, the output of this
first stage the set of EPCs. Some evasive payloads can be nested
into more than a single EPC. Even further, there is no guarantee
that any of these EPCs are used for hiding a payload. Further stages
are in charge of determining that.

Stage 2 - Forcing the Untaken Branch. This stage takes the list
of EPCs from Stage 1 and the original malware candidate as input.
The EPCs are located and instrumented in the malware candidate
to force the execution of the false side of the branch. In the case
of Java bytecode, we interleave stack operation to flip the result of
the conditional instruction. In addition, we interleave a checkpoint
in each EPC. This is, we log a mark when an EPC is visited at run
time.

The result of each instrumentation is a set of new binaries, each
of them is an almost-identical copy of the original malware candi-
date, where the decision of a certain combination of EPCs is flipped
and the originally non-taken branch is executed at run time. The
combinatorial strategy is a key element to discover a payload lo-
cated in nested blocks controlled by several FSs. An increase in the
amount of FS considered in Stage 1 results in more EPCs, which
leads to more combinations. Since the amount of new binaries to
consider for the next stage directly depends on the amount of EPCs
and their combinations, it is critical to combine them strategically,
as we discuss further in Subsection 2.3.1.

Stage 3 - Execution of the Instrumented Malware Candidate. The
multiple binaries from the previous stage are executed in a mon-
itored environment for behavioral analysis. An example of such
an environment is the Google Bouncer, an infrastructure where
apps are executed before entering in the Google Play market to be
analyzed and to detect malicious or forbidden behavior.

In principle, there are no restrictions on the nature of the envi-
ronment. The result is independent of the hardware, provided that
the malware candidate is able to fully run on it. The reason behind
this is that, if the malware candidate uses a particular feature of
the environment to evade, then the function to extract this feature
should be considered an FS. Therefore, the system is, at least in
theory, fully agnostic on the running environment.

Ares: Triggering Payload of Evasive Android Malware MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

The only requirement to the environment is the access to the
checkpoint logs mentioned in Stage 2. This information is used
for creating the EPC flipping combination and should be accessible
by the system. In other words, in order to decide combinations of
EPCs to flip, it is necessary to know which EPCs have been visited
in certain executions.

Besides this requirement, the behavioral analysis is standard and
requires no modification. As usual, it runs the malware candidate
with environment and user-simulated stimulus with the goal of
detecting malicious behavior.

2.2 An Ad-hoc Running Environment

The system runs on top of an existing dynamic environment, such
as Google Bouncer, with access to the checkpoints logs. In order to
test the approach and since most of the state-of-the-art behavior
analyses are not available as open-source tools [23], we have to
extend the system with an ad-hoc running environment.

For the purposes of this paper, we will consider a monitored envi-
ronment that generates execution traces of low-level sensitive API
calls, such as opening a network socket, sending an SMS, loading
code dynamically, and accessing the file system. This environment
is a modified Android OS that logs when certain sensitive func-
tions are called, generating a trace log. The log entry includes the
arguments and the call stack as this information can help us to
characterize the payload. In this way, and in addition to executing
a malware candidate in this environment, all the variations created
by the system are executed and their trace logs are compared to
expose new execution paths.

Our ad-hoc behavioral analysis installs the instrumented applica-
tions generated in Stage 2 in the monitored Android environment
and stimulates the execution using Monkey [7]. After that, it unin-
stalls the app and extracts the trace log generated. Once all the call
traces are collected we compare them with each other to detect
extra executions that might be the expression of the payload. The
logs are aligned and the differences in the executions are manually
analyzed using comparison tools. The block in the trace log where
the payload is executed will be referred to as payload evidence.

In our experience, the most effective comparison takes all the
instrumented executions against the vanilla execution—i.e., the ex-
ecution of the malware candidate without any instrumentation.
It is also possible to analyze single executions by searching for
payload elements, such as open ports, that occur only in certain
instrumented execution.

Running Stage 3 under this setting encounters several issues
that are discussed in detail in Subsection 4.1. However, a payload
detection mechanism is needed to run the system. It is important
to notice that such mechanism is independent of the evasion cir-
cumventing approach that is proposed.

2.3 Optimizations and Enhancements

The full system can be explained following the algorithm in Figure 3,
which has its graphical representation in Figure 2.

Given a malware candidate APK in line 1, the system runs an
information-flow analysis to find the set of EPCs (line 2), as de-
scribed in Stage 1. In line 3, a set of logs L is initialized with a
single element: the log trace of the vanilla execution, produced by
the execution of the malware candidate without any modification
in the monitored environment. The last initialization step is in line
4, when a worklist S is created with possible combinations of EPCs

to flip. Each combination s ∈ S is a set of zero or more EPCs to flip.
Further, we process each s element of the worklist S in a for-loop
at line 5.

The function Instrument() in line 6 performs Stage 2. It cre-
ates a new version of the malware candidate where the EPCs in s
are flipped. The function unpacks the original APK, instruments
the Java bytecode in it, repacks it, and signs it. The instrumentation
searches for each EPC to flip and negates the condition to force the
execution of the non-taken branch. It also inserts a checkpoint that
logs when an EPC is visited so that, when the application is run,
there will be an indication of the reachable EPCs in the log.

1: procedure Main(APK)
2: EPC ← DependencyAnalysis(APK, spec);
3: L ← {Exec(APK) };
4: S ← InitS(EPC, APK);
5: for all s ∈ S do

6: APKs ← Instrument(APK, s, EPC);
7: loдs ← Exec(APKs);
8: L ← L ∪ {loдs };
9: S ← Add(S, loдs , s);
10: end for

11: PayloadEvidence ← Analyze(L);
12: return PayloadEvidence ;
13: end procedure

Figure 3: Core Algorithm

Stage 3 starts at
line 7, when each in-
strumented APK is
executed in the mon-
itored environment
and the trace logs are
accumulated in the
set of logs L (line 8).
The function Add()
in line 9 models the
feedback loop that is
explained further in

the next subsection.
Lastly, the function Analyze() in line 11 fully encapsulates the

way that the behavioral analysis evaluates the maliciousness of the
considered APK. In the case of our ad-hoc analysis, it takes the set
of trace logs generated by the monitored executions and compares
them. Its objective is to find the Payload Evidence by searching for
unexpected or malicious actions, such as remote connections or
personal information access.

Following, we enumerate some of the design decisions to opti-
mize and enhance the payload detection. Starting with the feedback
loop from Figure 2, we also tackle the problem of interprocedural
dependencies and a mitigation of evasion using sleep calls.

2.3.1 Efficient Path Exploration. Triggering the payload of eva-
sive malware is a path coverage issue. Sometimes called predicate
coverage, this requires the combination of each logical condition to
execute all the possible program traces. This kind of attempt can
easily grow into a combinatorial explosion.

Inspired by DD-path graphs [8], we decided to simplify the exe-
cution paths as a complete binary decision tree with EPCs as nodes,
left edges for not flipped, and right edges for flipped. In order to de-
termine which EPC can be found in a particular execution path, we
use the checkpoints inserted by Instrument() and backtracking.
These checkpoints simply log when an EPC is visited during the
execution.

1: procedure InitS(EPC, APK)
2: APK{} ← Instrument(APK, { }, EPC);
3: loд{} ← Exec(APK{});
4: return visitedEPCs(loд{});
5: end procedure

The log analysis step from Figure 2 is implemented by visitedEPCs(-
), which searches for the checkpoint marks in an execution log and
returns the set of those EPCs in the trace. During the worklist ini-
tialization, the instrumentation does not flip any EPC (as shown by
the fact that the second argument is the empty set in line 2), but
injects the log calls to detect that an EPC was reachable. Each of the
EPCs found will later be individually flipped, potentially leading to
new EPCs.

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Luciano Bello and Marco Pistoia

information flow analysis

...

EPCs

Java bytecode
instrumentation

malware candidate

combinatorial strategy

feedback loop

sensitive API calls

comparison
payload
evidencelog analysis

monitored emulator/device

Figure 2: General Workflow of the Full Ares System

The Add() function extends the worklist at the end of every iter-
ation with new EPCs that have been discovered in each execution.

1: procedure Add(S, loдs , s)
2: V ← visitedEPC(loдs);
3: nS ← V \ S ;
4: for all ns ∈ nS do

5: S ← S ∪ {s ∪ {ns } };
6: end for

7: return S ;
8: end procedure

The feedback loop from Figure 2 is implemented byAdd(S, loдs , s)
function, which extends the set S based on the new explored path.
After each execution of an instrumented APK in which the s EPCs
were forced to flip, the trace log loдs is analyzed looking for the
EPCs in that trace (line 2). Each of those newly discovered EPCs (de-
noted as nS in line 3) is combined with s to extend S (line 5). In this
way, a backtracking algorithm for path exploration is implemented.

As an example, consider the situation where function Depen-
dencyAnalysis() finds 5 EPCs, denoted as 1 , 2 , 3 , 4 and 5 ,
respectively. The successive extensions of S are detailed in Figure 4.
Figure 4a represents the state after the initial execution in line 3 of
Init(), in which EPCs 1 and 2 were visited. Let denote the
end of the execution, whether this happens as a consequence of
timeout or a program crash, which might take place for the reasons
explained further in Section 4.4. In Figure 4b, EPC 2 is flipped,
denoted as 2 , and two new EPCs are discovered: 3 and 5 . These
are combined with 2 and added to S , in line 5 of the algorithm.
We removed the explored flipping combinations from S for clarity.
The rest of the steps are as expected, until each element in S is
exhausted.

2.3.2 Interprocedural Analysis. A common problem of static
information-flow analyzers is the extensive over-approximation
that takes place when modeling interprocedural settings. A sound
interprocedural analysis requires a precise call graph and heap
representation. In the information-flow context, this creates over-
tainted data – i.e. over-approximations that create false positives.
More false positives translate into more EPCs whose flip do not
lead to more chances to find the payload snippet.

In our scenario, we decided to simplify the interprocedural anal-
ysis by dynamically extending the list of FS functions. When an FS
flows to a return statement instead of a branching condition, we
add the method in which this happens to the list of FS functions,
and we rerun the analysis. This way, if in other parts of the code
there is a branching depending on a method that might return a
tainted value, we capture that branching as an EPCs.

2.3.3 Evasion through Sleep Calls. Some malware might try to
evade detection by delaying the payload waiting for the behavioral
analysis to stop the execution. For example, it is well-known that

the Google Bouncer analyzes an app by running it for five minutes
[22]. It is then trivial to hide the malicious behavior by just waiting
for that time before activating the payload.

We decided to mitigate this form of evasion by nullifying the
most common form of delay evasion: sleep calls, which are primitive
functions to turn the program inactive for a certain period of time.

Our instrumentation (function Instrument, line 6 in Figure 3)
searches for instances of sleep calls and replaces the argument
with a zero. This approach, called sleep acceleration, is also used by
previous work that implements countermeasures against evasion
techniques [19].

Because sleep calls also govern timeouts and retry operation
attempts, they cannot be fully ignored at the operating-system
level. When the delay depends on information from APIs, like in
the case of triggering the payload in a particular date, we consider
them as FSs. Other forms of delays, such as using stalling code,
cannot be handled with sleep acceleration and are discussed in
Section 4.

3 INSTANTIATION OF THE SYSTEM: ARES

While the ideas presented in the paper are independent of any
particular implementation, in order to test the approach we imple-
mented Ares: a toolchain to help unveiling the payload of evasive
Android malware.

3.1 Implementation and Evaluation Settings

Ares consists of anAPK coder/decoder, an information-flow-security
analyzer, a Java bytecode instrumenter, a modified Android oper-
ating system running in an emulator or in a device, and a tool to
compare files, as well as glue scripting code to orchestrate all the
components. The full implementation of Ares is publicly available
in the URLs listed in Section 7. We used APKTool 2.0.3 [32] for
unpacking and packing APKs. A handful of Python 2 and Bash
scripts were used to process the files and automate tasks such as
installing and removing the packages in the environment.

For Stage 1 we wrote an information-flow tracker using WALA
1.3.6 [36], which supports Java bytecode analysis. Our tracker takes
the FSs and statically analyzes the Java bytecode, searching for
the branching opcodes that depend on those FSs. The decisions on
which FSs to select is a trade-off: a very generic source (such as
a constructor) creates many EPCs (and most likely, many APKs),
while a very specific source may increase the precision, but might
be bypassed by obfuscation. This specific selection is based on
the existing literature of evasive Android malware and it can be
modified or extended in other scenarios.

We wrote a bytecode instrumenter using ASM 5.0.3 [34] for
Stage 2. When one of the opcodes is encountered, we pop the

Ares: Triggering Payload of Evasive Android Malware MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

2

1

(a) {{ 2 }, { 1 }}

2

1 3

5

(b) {{ 1 }, { 2 , 3 }, { 2 , 5 }

2

1 3

5

(c) {{ 2 , 3 }, { 2 , 5 }}

2

1 3

5

(d) {{ 2 , 5 }}

2

1 3

5

(e) {}

Figure 4: Backtracking to explore EPC flipping combinations.

arguments from the stack and push new arguments that force the
execution of the other side of the branching. The instrumenter also
nullifies the sleep method calls for sleep acceleration.

The installation, execution, and stimulation of an app in the
monitored environment for Stage 3 is done by Bash scripts calling
ADB and Monkey [7]. We installed a custom Android Open Source
Project 5.1.51 on an emulator and, for performance reasons, on a
Nexus device. The customization of the Android code is the inser-
tion of log calls java/lang/System.log in sensitive functions,
such as ClassLoaders and network connectors.

The log analysis for the feedback loop and the combinatorial
strategy is implemented in a Python 2 script. For the log comparison
we used icdiff 1.8.1 [10] in combination with ad-hoc scripts to find
key operations, like extracting URLs from network-connection
attempts.

During the development of Ares, and inspired by previous work
and known malware, we built a test suite: Evadroid. Then, to study
the viability of our approach in real scenarios, we evaluated Ares
against both Evadroid and known malware.

The summary of these evaluations can be seen in Tables 1 and 2.
Column # of EPCs reports the number of EPCs found by the depen-
dency analysis for each case. Consequently, Column unreachable
EPCs corresponds to the number of EPCs that were not executed
by any of the traces. This gives an idea of the code that was not
covered. Column sleep calls indicates the number of nullified sleep
calls. The number of generated APKs is reported in Column # of
APKs. This includes also APKs with combinations of flips, following
the strategy explained in Section 2.3.1. Following, we report the
number of APKs whose executions ended in crashes. Given that
the tests in Evadroid are very simple, no crashes were detected
and we removed that column from Table 1 for clarity.

When the payload is totally or partially detected by Ares after
the execution of all the generated EPCs, we marked them with ✓

and ✓✁ respectively. When this happened, we also reported in which
iteration the payload was detected and how many simultaneous
flips were needed to trigger it. Since in Evadroid every test has
the same payload, we excluded this column in Table 1. We used ✗
to denote a situation in which the payload was not detected.

The following sections explain the most interesting cases of the
evaluation. All the raw data from where these results are extracted
can be found following the links in Section 7.

3.2 Evadroid 1.0 Test Suite Evaluation

Table 1 summarizes the results of Ares against Evadroid 1.0. We
extracted evasive techniques from existing malware and from pre-
vious work and reimplemented as minimal Android apps. In all the
tests, the payload is exactly the same: send one or more premium
SMSs. We designed these tests with the purpose of highlighting the

benefits and defects of Ares, as well as making it comparable to
future approaches.

Inmost cases, only twoAPKs are generated, since there is a single
evasion point. Most of the unreachable EPCs were found as a result
of over-approximations in the dependency analysis, which taint
other branching points in the SDK library included in every app.
This can be noticed by the fact that the number of EPCs is always
similar. Because most of the boiler-plate code is never executed, the
same situation applies to the number of unreachable EPCs.

The test constants2 needed more than one flip to trigger the pay-
load. As the rest of constant* tests, this case makes use of multiple
FSs, but in the following arrangement. This creates a set a nested
conditionals at bytecode level.
if (Build.MODEL.contains("sdk") &&

Build.MODEL.contains("emulator")&&

Build.PRODUCT.startsWith("sdk")&&

Build.BRAND.equals(Build.DEVICE)&&

Build.FINGERPRINT.startsWith("generic")

) { payload }

The tests sleep and postDelay make use of sleep calls, and no
flipping was necessary to trigger the payload, just the nullification
of these calls. In addition, notice that a single APK was generated,
since no EPC was visited during the execution. In the same direc-
tion, longAction and constantDLC do not exercise any EPC. The
first one, simulates the sleep call with a time consuming I/O action.
In our setting, this action took around 20 minutes and delayed the
execution of the payload over the limit of the monitored execution.
Because this test does not make use of FSs or sleep calls, the pay-
load was not detected by Ares. The constantDLC has the evasion
mechanism in dynamically loaded code and is also not detectable.
The situation of qemuFingerprinting also loads code dynamically
(native code in this case). However, the evasion is detected since
the native code is used just for fingerprinting, while the evasion
itself is performed in the main class. By considering System.load
Library a FS the evasion is detected.

The last situation that was not captured by Ares is divById,
which has the following structure:
try { int invId = 1 / toInt(getDeviceId ());

payload
} catch (ArithmeticException e) { harmless behavior }

The test triggers a division-by-zero exception when getDev
iceId is composed only by zeros (common device ID in many
emulators), creating a branch without conditional opcodes. Since
our setting does not account for this form of implicit flows, the
dependency is not detected and the evasion point is missed. These
three cases where detection was not possible are discussed in detail
in Section 4.

In total, 86% of the test cases were detected. Each test generated
an average of 2.8 APKs, and most of them triggered their payload
in the second execution or earlier. On average, each test contained

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Luciano Bello and Marco Pistoia

Table 1: Results for the Evadroid 1.0 test suite

Name #
of

EP
Cs

un
re
ac
ha
bl
e

EP
Cs

sle
ep

ca
lls

#
of

A
PK

s

de
te
ct
ed
?

in
ite

ra
tio

n
si
m
ul
ta
ne
ou

s
fli
ps

accelH 123 122 0 2 ✓ 2 1
adbEnable 123 122 0 2 ✓ 2 1

adbPortDetector 126 122 0 5 ✓ 2 1
atNight 124 122 0 3 ✓ 2 1

batteryCharging 126 125 1 2 ✓ 2 1
batteryFull 126 125 1 2 ✓ 2 1

batteryStatus 123 122 0 2 ✓ 2 1
constantCalls1 126 122 0 5 ✓ 3 1
constantCalls2 125 122 0 4 ✓ 3 1

constants1 129 122 0 8 ✓ 5 1
constants2 127 122 0 6 ✓ 6 4

constantsDLC 129 129 0 1 ✗
divById 123 122 0 2 ✗

getIpAddress 125 124 0 2 ✓ 2 1
installedApps 123 122 0 2 ✓ 2 1

longAction 122 122 0 1 ✗
postDelayed 122 122 1 1 ✓ 1 0
procNetTcp 128 125 0 4 ✓ 2 1

qemuFingerprinting 123 122 0 2 ✓ 2 1
signatureVerification 123 122 0 2 ✓ 2 1

sleep 122 122 1 1 ✓ 1 0
uptime 123 122 0 2 ✓ 2 1

Average 124.6 122.8 0.18 2.8 86% 2.4 1.1

124.6 EPCs, but only 1.8 could be exercised. On one hand, this could
be an advantage, because less reachable EPCs mean less APKs to
instrument and test. On the other hand, it puts out a relative low
coverage and that might translate into an unavailability of finding
the payload in real malware. Hence, there is a need for validating
these results with malicious apps from the wild.

3.3 Ares against Real Malware

We ran Ares on 10 instances from different malware families. We
took known malware that showed some for of evasive mechanism
in hand-made reports. The objective is test the approach against
real-case scenarios. We focused on diversity, as we considered old
and new instances, as well as simple and very complex families. The
newest instance is from the Android.Spy.277.origin family, which
was first seen by VirusTotal in October 2016. In contrast, we con-
sidered very classic malware, such as AnserverBot and BaseBridge.

The results of our analysis is summarized in Table 2. Ares ex-
posed the payload in 7 over the 10 considered cases and, in addition,
exposed a partial payload in 2 other cases. With an average of 75.5
APKs generated for each candidate, we argue the approach is fea-
sible. Specially because the payload was found much quicker (in
iteration 31.9, in average). The footnotes are the SHA256 sum of the
used instances, for a quick reference in the VirusTotal website [33].

3.3.1 Connection to C&C Servers. Many forms of malware have
the goal of handling the control of the infected device to an external
entity. The attacker can control many devices from a centralized
location, known as C&C. Hiding the hostname of this C&C is key
for the attack to last longer. If the C&C host is known, it can be
firewalled or closed by a judicial order.

Malware such as AnserverBot, BaseBridge, and JSmsHider are
examples that include several features to hide the C&C host such as

Table 2: Results for the malware families

Name #
of

EP
Cs

un
re
ac
ha
bl
e

EP
Cs

sle
ep

ca
lls

#
of

A
PK

s

#
of

cr
as
he
s

de
te
ct
ed
?

payload in
ite

ra
tio

n
si
m
ul
ta
ne
ou

s
fli
ps

Android.Spy 1964 1590 60 376 19 ✓ APK download 109 3
AnserverBot 86 67 2 41 1 ✓ remote host connection 34 3

Banker-IR 43 5 3 39 0 ✓✁ change default SMS app 20 2
BaseBridge 142 108 12 35 8 ✓ remote host connection 14 3
Deng.KJF 646 576 8 71 70 ✓✁ remote host connection 20 1

DroidCoupon 179 84 10 96 6 ✓ unpack exploit 68 2
Dropdialer 2 2 0 1 0 ✗
Fakemart 10 3 2 8 1 ✓ premium SMSing 2 1
JSmsHider 89 64 0 26 2 ✓ remote host connection 4 1

SmsReg 950 874 32 62 30 ✓ APK download 6 2

Average/Total 411.1 337.3 12.9 75.5 13.7 7 31.9 2

aggressive code obfuscation and encryption. [17, 29, 40] We used
Ares to analyze an instance of each of these families. A simple
string search of URLs in these kind of malware would not reveal the
C&C hostname or its request parameters. Because Ares works on
top of a behavioral analysis, it did not have to attack the obfuscation
or the encryption to force the instance to call home.

For the AnserverBot1 case, the instance we analyzed connects
to a C&C hosted at b4.cookier.co.cc:8080 in the 34th itera-
tion of Ares. The request sends device id information and waits
for commands. The host, which at the time of writing this paper
resolves to a Korean IP, is up and running but without the port
8080 opened. As Android.Spy.277.origin, this malware family also
checks the package signature to ensure that the app was not manip-
ulated. Ares automatically circumvented this protection because
the function to get the package signature is considered an FS.

Ares shows that the analyzed instance of BaseBridge2, as An-
serverBot, connects to b3.cookier.co.cc:8080C&C server in the
14th iteration. It sends phone identification information in theHTTP
GET request. According to the NetQin Mobile "upon activation, the
malware would activate three malicious services – AdSmsService,
BridgeProvider and PhoneService – to communicate with a control
server"[17]. Ares was able to trigger that activation and was able
to expose the C&C host without any human interaction.

Lastly, the analyzed instance of JSmsHider
3 communicates to

the C&C using DES encryption [29]. This behavior can be observed
in the 4th iteration of Ares, when the malware communicates to
the C&C http://svr.xmstsv.com/Notice/ after accessing the
javax.crypto package. Because our monitoring reports on the
arguments of cryptographic calls, Ares was able to expose the DES
key used for the encrypted communication, which is "[B@192f53"
in this particular instance. The malware initially sends information
about the infected device.

3.3.2 Access to Remote APKs. A special case of the previously
explained remote connection is the access to a remote APK. Mal-
ware usually uses this technique as a way to bypass the market
restrictions. Ares discovered two instances that connected to a
remote server from where they tried to download new packages to
install in the victim system. These instances belong to the families
Android.Spy.277.origin and SmsReg.

1 10032dc19f609ed8b7577a5620c87a1bd9605ef0b12654e5983982cd640c0d89
2 58781d1e86b8ea935c6ae7145b0a46e70e92d10e39f02404dc5bfab6e4d1bded
3 7c940a56ec8522b6c84607f822dde8f5fb48480312583f3d1fd81e9af02f6e6b

Ares: Triggering Payload of Evasive Android Malware MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

The analyzed Android.Spy.277.origin
4 downloaded a remote

APK from http://uhay.vn/ngach/fixpolac_50030.apk, dur-
ing the iteration 109. This file was still available at the moment of
writing this paper and its maliciousness was confirmed by VirusTo-
tal5. A string analysis of the instance does not expose the hostname
nor the APK name.

The remote request is triggered in a separate thread and runs in
the background. In order to expose this behavior 3 EPCs had been
simultaneously flipped. Part of the evasion is a signature checked
that the malware performs to detect modifications.

The access to the remote malicious APK matches the manual
analysis that have been reporting about this family. For example, a
Check Point analysis mentions an attempt to "download the mali-
cious APK called polacin.io to the device remotely through the C&C
server"[15]. The main package name of the APK accessed by Ares is
com.polac.ingen_dft30, supporting the idea that we are, indeed,
referring to the same malicious APK.

In addition, our instrumentation also reports that personal in-
formation (such as model, OS version, and the like) is leaked to a
pi.pingstart.com:17209 directly, without any evasion mecha-
nisms. Although this leak is arguably malicious, since PingStart is
a well-known ad platform.

In the case of SmsReg
6, a decompilation of this instance exposed

the strings android.51mrp.com:8077 and dl.elevensky.net.
During the execution of the 8th iteration, Ares showed that the
first host is used to call home. This host was up and running at
the moment of writing this paper, although blacklisted by Google.
Ares allowed further conclusions by showing, in the 6th iteration,
that the malware fetches two APKs the second location mentioned.
Because we performed an analysis that exhausts the combination
of reachable EPCs, we were able to discover a total of 7 APKs that
were downloaded from dl.elevensky.net At the moment of this
writing all these APKs were still available for download.

An analysis from VirusTotal indicates that all these 7 APKs
are malicious at different levels. Two of them where unknown by
VirtusTotal when submitted by us, in September 2016. Since the
analyzed instance of SmsReg was first submitted to VirusTotal in
May 2015, there is a possibility that these APKs have never been
discovered before Ares exposed them.

3.3.3 Other Payloads. The DroidCoupon family was described
in detail by Jiang [9]. As Jiang describes, it tries to escalate root
privileges by running an exploit known as RageAgainstTheCage,
which exploits a vulnerability called adb setuid exhaustion. In the
instances of DroidCoupon7 analyzed by Ares, the exploit is ob-
fuscated and packed. Ares triggered and showed the unpacking
process of the exploit into the file /data/data/cn.buding.coup

on/files/rageagainstthecage during the 68th iteration of our
method. We were available to confirm the exploit.

In addition to exposing the unpacking process of the exploit, this
execution is also the only one loading the native library libandro
idterm.so8. The library is included in the original APK and it is
considered to be malicious by VirusTotal.

4 82afc2da4ea0404a3a1fa9756b3c85853a63fd26d657fa1d9fcd6c0955e2a84e
5 ced1c2e4924ac5905e1a0a613b0699b2b02c1e95f0a67bd86aa5b342fa9a0be1
6 1c802423b1c87d637fb9f6d0027ce4cde0be43462ca3bfe8159c3541d27b6da5
7 94112b350d0feceff0a788fb042706cb623a55b559ab4697cb10ca6200ea7714
8 2b5c883a5678768e831006b8f4fb04ae35fe5ba70157f8accf0d8dd5d2c27ce8

We also analyzed with Ares a particular instance of the Fake-
mart

9 family created by Petsas et al. to test one of their anti-analysis
techniques [23]. It is a modification of a simpler instance of Fake-
mart that sends premium SMSs which use no evasion. The modifi-
cation from Petsas et al. wraps the payload in an evasion technique
that detects the execution on QEMU-based emulators. They called
the technique xFlowH and it is explained in detail in Section 2.3 of
[23].

When Petsas et al. tested this instance of Fakemart with xFlowH
with 12 well-known dynamic analysis tools, none of them could
detect the payload. However, Ares detected the payload by consid-
ering the calls to native code as FS. That is, if a decision is made
based on the result of a native code call, that decision is a possi-
ble evasion point. In the second iteration, by flipping the single
point where the emulation environment is checked, the payload
was exposed.

3.3.4 Partial or No Payload Exposed. As Ares is neither sound
nor complete (explained in the Section 4), we encountered three
instances where the perform was the expected one: Banker-IR,
Deng.KJF, and Dropdialer. In the first two cases, we considered that
Ares detected part of the payload (notated as ✓✁ in Table 2). This is,
situations where we know, for example, from previous reports that
their payloads include several stages and some of them were not
triggered.

The instance of Banker-IR10 that we took was previously an-
alyzed in detail [1]. The malware has typical evasive strategies to
avoid running the payload in emulated environments. According
to its report, the malware have a two-staged payload: it attempts to
receive device administrator rights as to contact its C&C server at
the same time. While Ares was able to trigger the administration
right request to the user in the 20th iteration, we did not observe
any connection to the C&C.

Also we consider a partial detection the situation with the ana-
lyzed instance of Deng.KJF11.

During the 20th interation, the instance opens the browser for
accessing m.74443.com, with sensitive information (such as the
location and the device ID) in the GET parameters. This websites
with adult content does not appear in a string analysis of the sam-
ple, but it is embedded in many detected malware files, according
to VirusTotal12 and should be considered dangerous. Since there
are many strings matching IP forms in the decompilation of the
instance, we were expecting to see connection to them. However,
most of executions finish in crashes and, therefore, we have to
assume those connections remain hidden and the payload was not
triggered.

Lastly, let us consider the case of Dropdialer13 which, accord-
ing to the reports, in June 2012 evaded the Google Bouncer by
fingerprinting the environment and was downloadable for 2 week
in the Google Play store [20]. Based on this, we took an instance of
it with high expectations of capturing the payload. However, Ares
was not able to find enough EPCs to trigger any malicious behavior.
This could be the consequence of incompleteness in the FS list or
in the static dependency analysis.

9 5e1cf973a37a9460ddfdaee46a318ad7a59c2f99dd02d14362a0c15f8b6d4adc
10 4ab8f26e8aaee3de12b04b7a86be9ee349672e228b52e5b90dcd63cf7b564e34
11 8c6ba45515ccf0e48db450aa2aa6bab23b3ef06302cd1c2abaced4254d355a30
12https://www.virustotal.com/en/domain/m.74443.com/information/
13 0ca20e6fa0b57583dff39e0ab25d43c14beb410afac5569a9e5aaadabd2f1932

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Luciano Bello and Marco Pistoia

3.4 Performance

The static analysis and instrumentation time is negligible in our
single desktop settings where Ares was executed. In general, the
system multiplies the analysis time of a regular behavioral analysis
by the amount of APKs generated to find the payload. Since the ar-
chitecture is trivially parallelizable –the behavioral analysis can be
simultaneously run in several elements of the worklist– we consider
the approach feasible to be implemented on existing analyses.

4 LIMITATIONS AND THREATS TO VALIDITY

Although this approach towards forcing the execution of mobile
malware payload is incomplete and unsound, it works in many
scenarios and moves the arms race to the next level. In the pro-
cess of developing Ares, we identified challenges for further steps,
including some possible solutions.

4.1 The Considered Running Environments

Even though the general approach of this paper is independent of
the running environment that defines and detects the malicious
payload, we had to put an environment and a detection criteria
in place in order to test it. Our focus was not to compete with
well-tested existing behavioral analyses, but to extend them. As a
consequence, there is a lot of room for improvement in this aspect
to make Ares a fully comparable and functional system. Better
forms of dynamic analysis have been studied in the past, with
proper input stimuli and sandboxing [21, 23]. There are two main
aspects to consider in the presented running environment: the trace
comparability and the lack of good input stimulus.

We detected the payload by comparing the trace logs generated
by the execution of the instrumented malware candidate. The exe-
cution reproducibility is crucial to facilitate the comparison of the
trace logs. However, an exact execution condition is hard to achieve.
There are many sources of non-determinism and that makes trace
log aligning intricate. The problem of identifying and eliminating
sources of non-determinism for differential analysis of network
traces was attacked by Continella et al. [2]. In our case, the notion
of trace is more generic than the mere network activity and their
work cannot be reused in this context.

For this reason, we performed the trace comparison mostly man-
ually, with help from some scripts and comparison tools such as
icdiff [10], with the intention of focusing on reproducible sys-
tems as part of future work. More complex ways to align execution
traces had been studied before (e.g. [11]) and it might be beneficial
to explore alternatives on this issue.

With respect to proper stimulus, running an application requires
user-like input (tapping in buttons, voice interactions, etc.) that
is hard to simulate automatically [6]. Our environment interacts
with the app by randomly tapping the screen and pressing the
buttons (such as speaker volume) while triggering all the registered
intends. We stimulate the app very basically using Monkey [7] but
it might not be enough. A respectable amount of literature about
this problem and possible solutions is discussed in Subsection 5.2.

4.2 Static Analysis Incompleteness

In Ares we use WALA for the dependency analysis, which is fully
static. That means, Dynamically Loaded Code (DLC) is not analyzed,
making situations like the constantsDLC test from Evadroid im-
possible to detect, since the evading branching is in DLC. Notice
that our approach could fully detect if just the payload lives in DLC,

since this code would run on the monitored environment. Similarly,
we were able to detect qemuFingerprinting because the System.lo
adLibrary method is considered a FP while the EPC is part of the
analyzed code.

Another source of incompleteness comes from reflection, which
is hard to handle statically. A possible solution would be to move
the dependency analysis to a dynamic approach. Similarly, handling
DLC is challenging [28, 39]. In principle, it would be possible to
detect a DLC situation, analyze it, and instrumented, all on the
fly at running time. Dila is a WALA effort to extend the analysis
to DLC [35]. However, this would complicate the system substan-
tially and would move the problem to dynamically loaded native
code, or JNI. This will make the system dependent on the running
environment, which conflicts explicitly with our design decision.

For scalability reasons, the static dependency analysis we used
does not consider implicit flows. Implicit flows occur when the
data dependency is through the control flow of the program, in
opposition to the direct assign. In the following two examples, there
is data flowing to y from the result of the FP() call. On the left-hand
side, that flow is explicit (y depends on x and x depends on FP())
while on the right-hand side, the dependency is implict y value
depends on a condition, that depends on FP().

1: x ← FP();
2: y ← x + 5;

1: y ← 0
2: if FP() == 1 then
3: y ← 6;
4: end if

Given that in our system the branching points are sinks, implicit
flow in this basic sense is covered out-of-the-box. However, there
are other forms of implicit flow. A notable case are exceptions, like
in the divById test from Evadroid. Exceptions create branches that
are very coarse to capture statically [4]. A dependency analysis
with support for implicit flow created by exceptions would create
a huge amount of EPCs, since almost every statement is prone to
raise exceptions.

4.3 Delays by Stalling Code

When a malware is tested dynamically, the execution needs to be
finished at some point. In the particular case of our monitored
execution, we run the instrumented malware candidate for some
seconds. By considering functions depending on the date or hour
as FS, we can capture some forms of time bombs. Additionally, we
mitigate some forms of delay evasion by nullifying sleep calls (see
Subsection 2.3.3).

However, an attacker could create any time-expensive operation
(sometime known as stalling code) to delay the execution of the
payload. These operations tend to be inefficient and noisy and could
be detected by some heuristic, but they are threats that needs to
be considered. We discuss the existing related work in the area in
Subsection 5.3.

4.4 Imprecise Modeling and Breaking the

Invariant

The use of decision flow graphs (see Figure 4) is an additional
potential source of imprecision, since it ignores the effect of loops.
This shortcuts also ignores cross-edges and joint points, leading to
unwanted situations. For example code blocks might escape forced
execution in cross-edges or while loops might never finish.

A similar problem might occur in certain conditional branches.
Forcing to take a branch by negating the condition in the guard
breaks the block invariant. For example, if the condition checks

Ares: Triggering Payload of Evasive Android Malware MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

the existence of a file, the true side of the branch might correctly
assume that the file exists and tries to read it. This means that
our instrumentation might lead to a lot of crashes. The Column #
of crashes on Table 2 reports on the amount of crashes when all
the APKs are tested. The general assumption is that the payload
does not depend on the condition, which most probably depends
on the FS exclusively. But it is important to notice that the crash
produced by a broken invariant might also be used for evading
or just affecting the functionality of the application, making it
impossible to execute it. For example, a broken invariant can make
an app to loop endlessly.

Some possible solutions to this problem have been studied in the
x86 setting and are discussed in Subsection 5.1. These approaches,
instead of changing the branching guard, search for the possible
output of the FS method that takes the other branching side. This
avoids the problem crashing problem, but adds complexity and
might reduce coverage when the constrains are hard to solve.

5 RELATEDWORK

To the best of our knowledge, themost relatedwork to the presented
approach if from Rasthofer et al. [24]. While using an alike forced
execution and a combination of static and dynamic analyses, their
goal is slightly different: extract values of interest from the malware.
These values are constants used for calling sensitive methods, such
as phone numbers, URLs and the like. Instead of creating multiple
versions of the malware as in our approach, they create a single
reduced application which is the minimal code that composes the
value of interest. Since the semantic change necessary for creating
the reduced application is much more invasive than in our case, a
behavioral analysis performed on the result is further off from the
original software to analyses.

On the other hand, their work circumventing reflection could
definitely improve the results of our system. However, the closed
nature of their work makes a step in this direction difficult. In terms
of their limitations originated by the static analysis and the forced
execution of untaken branches, their description is remarkably
comparable to ours.

A recent work from Fratantonio et al.[3] introduced TriggerScope,
a system to detect logic bombs in Android apps. Under their defini-
tion, a logic bomb is a piece of code that triggers under very specific
circumstances. This definition fits perfectly with our description
of evasive behavior. TriggerScope uses static analysis to detect
these triggers and focuses on targeted malware (such as part of
an advanced persistent threat or state-sponsored attack). However,
they cover three specific types of triggers which are based on time,
location, and SMSs arrival. The scalability of the system needs to
be studied when considering more types of triggers. Ares includes
a significantly larger list of triggers (see the extended version of
this paper for a comprehensive list of FSs, Section 7) and, because
it works on top of a dynamic analysis, provides evidence of the
evasive behavior.

In the remainder of this section we report the most related work
on the vast corpus on evasive malware using path exploration for
x86 platforms. Then, we move to the mobile setting for report-
ing the main work on evasive malware and its connection with
the simulation of user stimuli. Lastly, we broadly discuss evasion
techniques based on delays.

5.1 Similar Ideas on x86

Kirat and Vigna studied evasive Windows x86 malware with Bare-
Cloud [12]. Similar to us, their malware candidates are run on a
monitored sandboxed environments and compared. By comparing
the execution of malware under simulated and bare-metal envi-
ronments, they are able to extract the payload. Since they monitor
all the system calls and not just sensitive functions, their log com-
parison is much more complicated. For this reason, they use bioin-
formatics algorithms to align and extract the payload [11]. Their
notion of evasion is only based on the difference of running in full
emulated and real environments. As a consequence, other form of
evasion like based on sleep calls, on date/time, or on the interaction
with the environment (such as the accelerometer measurement in
our case) are ignored.

Moser et al. also attempt to trigger evasive Windows x86 mal-
ware, but with a much broader notion of evasion than Kirat and
Vigna, including time bombs depending on date, the existence of
a file or directory, the Internet connection, or even when C&C
commands are received. They perform a path exploration of the
decision tree with a similar strategy to ours, but they manipulate
the FS instead of the EPC. When an EPC is reached, a snapshot
of the execution is taken and the execution continues. Then, the
input is manipulated in a bottom-up fashion to force the execution
of the untaken branch and performs a path exploration. Their im-
plementation maintains the state of the execution and is at much
lower level than ours, including an inverse memory mapping to trace
back to the FS, and constrain solvers to decide alternative returned
values. There is also extra complexity with network connection
and file system synchronization leads to a very intricate monitored
environment. After all, many paths might end up unexplored. On
the positive side, their system can report on which was the evasive
condition that the malware was using.

The main strategy of DVasion, proposed by Gilboy [5], is very
similar to the one from Moser et al. but, without state maintenance.
DVasion is probably the closer implementation for x86 to our ap-
proach in mobile. Released in 2016, DVasion manipulates the ei
p register to force the execution path in the instrumented binary
and uses dynamic taint analysis to find the FS-EPC dependencies,
instead of static analysis like us. Besides those differences, our ap-
proaches are similar (one for x86, there other for Android) and our
limitations are consistent to his.

5.2 Stimulus-based Malware Detection

As part of our Stage 3, we run the instrumentedmalware candidate
in a monitored environment. Sometimes, the candidate needs user
interaction to fully execute. There are many attempts to improve the
monitored emulated environments that simulate user interaction
to improve code coverage. Following, a summery of them.

Reina et al. introduced CooperDroid in 2013, an analysis build
on top of QEMU with the capability to stimulate behaivor on the
analysed malware [25]. CopperDroid allows to perform behavioral
analysis, deducing from very low level syscall sequences to high
level actions such as sending an SMS. The stimulation consists of
simulating user level action to discover additionalmalware behavior,
which can be considered the payload. CopperDroid tries to avoid
evasion by simulating a bare-metal a much as possible, which might
be insufficient in case of targeted evasion based on CopperDroid
fingerprinting evasion or time-bombs.

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Luciano Bello and Marco Pistoia

Similarly, Andrubis is also focused on recording low level calls
while stimulating the malware candidate with user simulation [37].
Their dynamic analysis is aided by a static information-extraction
pre-stage. The dynamic part is performed in an emulated environ-
ment, just like in CopperDroid, and taint-tracks private information
to monitors the behavior of the potentially harmful app.

CopperDroid and Andrubis complement our approach in Stage

3: the execution on the monitored environment. As mentioned
in Subsection 4.1, the stimulation we provide the app with might
not be enough. Most probably, a more complex stimulus would
increase the chances to trigger payloads and code coverage. Sadly,
both Andrubis and CopperDroid web services were off-line at the
moment of writing this work. They are also not open source projects,
making impossible to integrate them into our approach.

Most importantly, both attempts might no be enough to fully
attack evasion, as Vidas and Christin studied [30]. They focused on
techniques to evade analysis based on hardware and software com-
ponents, as well as performance and behavior of the environment.
For this purpose, they tested and fingerprinted different malware de-
tectors running on emulators such as the mentioned CopperDroid
and Andrubis among others. Beyond fingerprinting by simple API
methods like getDeviceId they also explored the use of sensors
and settings for that goal.

In the same way, Petsas et al. [23] suggested a taxonomy on
evasion techniques while testing them in multiple emulator-based
analyzers, including CopperDroid and Andrubis. They are going a
step further by profiling the underlying hypervisor. They suggested
many countermeasures to increase the realism in the emulator.

Given that our approach tries to trigger branches depending on
profiling and fingerprinting methods, we can handle these situa-
tions to a much longer extend than a single stimulated execution.
Our FS-to-EPC technique allows us to model many forms of sensor
based evasion (e.g. a payload triggered when it is shaken over cer-
tain threshold), time-based condition (e.g. payload that is triggered
in a certain date), and hypervisor characteristics. From both studies
(Petsas et al. and Vidas and Christin) we took many ideas to extend
Evadroid and showed Ares can be handled these situations.

5.3 Delay-based Evasion

Out of the mobile world delay-based evasion is very common and
well studied. Singh et al. distinguish between two possibilities: sleep
calls and time triggers [27]. In x86 sandboxing, it is common to
monitor for sleep calls and accelerate them, similar to our technique
explained in Subsection 2.3.3. For the second kind, our approach
can handle time triggers directly, by considering date and time
retriever methods as FS (for details in which are these methods. In
the mobile setting, Yang et al. included time-based evasion as part
of the device capability to read external-environment state [38].
Based on their observations, we included these time-based evasions
in Evadroid and showed that they are handled well by Ares.

A third sometimes-ignored possibility besides sleep calls and
time triggers is stalling code. As discussed in Subsection 4, stalling
code is challenging from the theoretical point of view. Kolbitsch
et al. studied instances of x86 malware using stalling code in de-
tail [13]. They suggest heuristics to detect when the malware got
stuck in a loop for long and forcing the exit. While, to the best of
our knowledge, there is no report of mobile malware using stalling
code to delay the execution of its payload, it is a matter of time. The
mobile platforms are more limited and easier to monitor than x86

architectures and, probably, stalling code cannot be as stealth as in
x86. But in any case, future approaches should start considering
mitigation techniques for that.

6 CONCLUSION AND FUTUREWORK

This paper describes a system for helping mobile malware analyz-
ers to trigger malware payloads on behavioral dynamic monitors.
The approach is easy to automatize and can be used with existing
infrastructure for dynamic analysis, such as Google Bouncer. We
implemented and tested the system against our novel Evadroid
malware test suite, and 10 real-world malware families, showing
that the approach is feasible and practical. In 9 of the malware cases,
the system was able to partially or completely exposed the payload,
without any need for code deobfuscation or reverse engineering.

The work we presented here tries to step ahead in the race
between mobile malware writers and analysts. Current behavioral
analyses can be easily extended to increase the chances to find the
payload at the cost of running several instrumented versions of
the candidate without any extra human interaction. Even though
the experimental results that we obtained by running Ares against
Evadroid and the real-world malware are very promising, it is easy
to predict that mobile malware will turn more complex and even
more evasive in the future, most probably following the path already
seen in the x86 platforms. Many of the accounted limitations had
been studied for x86 in the past years and we are planning to port
them to the mobile setting in further work.

7 AVAILABILITY

We released the source code of every developed tool for this work,
including Ares (https://ibm.biz/AresSystem) and Evadroid
(https://ibm.biz/Evadroid), as well as the raw results of our
evaluations. We also provided the patch file to the Android source
code. The information-flow analysis includes the WALA library
binaries and the intrumenter includes the ASM libraries. The freely
available tools, such as icdiff, APKTools, and Bash and Python
interpreters, as well as the Android source code are not included.

Also in https://ibm.biz/AresSystem, we published an ex-
tended version of this paper with appendices where we list: the
functions that have been nullified, the fingerprinting sources and
sinks used in WALA, details of each of the Evadroid cases, and
a full description of the findings for each of the malware samples
considered in this paper.

ACKNOWLEDGMENT

The authors would like to thank Omer Tripp and Pietro Ferrara for
their valuable contributions to early stages of this work.

Special thanks to the authors of [23]: Thanasis Petsas, Giannis
Voyatzis, Elias Athanasopoulos, Michalis Polychronakis, and Sotiris
Ioannidis, for sharing their evasive code with us.

REFERENCES

[1] Avast: Android banker trojan preys on credit card information (2016), https:
//blog.avast.com/android-banker-trojan-preys-on-credit-card-information/

[2] Continella, A., Fratantonio, Y., Lindorfer, M., Puccetti, A., Zand, A., Kruegel, C.,
Vigna, G.: Obfuscation-resilient privacy leak detection for mobile apps through
differential analysis. In: Proceedings of the ISOC Network and Distributed System
Security Symposium (NDSS). pp. 1–16 (2017)

[3] Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E., Kruegel, C., Vigna, G.:
Triggerscope: Towards detecting logic bombs in android applications. In: 2016
IEEE Symposium on Security and Privacy (SP). pp. 377–396 (May 2016)

https://blog.avast.com/android-banker-trojan-preys-on-credit-card-information/
https://blog.avast.com/android-banker-trojan-preys-on-credit-card-information/

Ares: Triggering Payload of Evasive Android Malware MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

[4] Genaim, S., Spoto, F.: Information Flow Analysis for Java Bytecode, pp. 346–362.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005), http://dx.doi.org/10.1007/
978-3-540-30579-823

[5] Gilboy, M.R.: Fighting Evasive Malware with DVasion. Master’s thesis, University
of Maryland, College Park, USA (2016)

[6] Gomez, L., Neamtiu, I., Azim, T., Millstein, T.: Reran: Timing-and touch-sensitive
record and replay for android. In: Software Engineering (ICSE), 2013 35th Inter-
national Conference on. pp. 72–81. IEEE (2013)

[7] Google: UI/application exerciser monkey | android studio. https:
//developer.android.com/studio/test/monkey.html (2017), accessed: 2017-06-08

[8] Huang, J.C.: An approach to program testing. ACM Comput. Surv. 7(3), 113–128
(Sep 1975), http://doi.acm.org/10.1145/356651.356652

[9] Jiang, X.: Security alert: New Android malware – DroidCoupon – found in
alternative Android markets (2017), https://www.csc.ncsu.edu/faculty/jiang/
DroidCoupon/

[10] Kaufman, J.: icdiff - side-by-side highlighted command line diffs. http://
www.jefftk.com/icdiff, accessed: 2017-06-08

[11] Kirat, D., Vigna, G.: Malgene: Automatic extraction of malware analysis evasion
signature. In: Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security. pp. 769–780. CCS ’15, ACM, New York, NY, USA
(2015), http://doi.acm.org/10.1145/2810103.2813642

[12] Kirat, D., Vigna, G., Kruegel, C.: Barecloud: Bare-metal analysis-based evasive
malware detection. In: Proceedings of the 23rd USENIX Conference on Security
Symposium. pp. 287–301. SEC’14, USENIX Association, Berkeley, CA, USA (2014),
http://dl.acm.org/citation.cfm?id=2671225.2671244

[13] Kolbitsch, C., Kirda, E., Kruegel, C.: The power of procrastination: Detection and
mitigation of execution-stalling malicious code. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security. pp. 285–296. CCS ’11,
ACM, New York, NY, USA (2011), http://doi.acm.org/10.1145/2046707.2046740

[14] Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: De-cloaking internet mal-
ware. In: Security and Privacy (SP), 2012 IEEE Symposium on. pp. 443–457. IEEE
(2012)

[15] Koriat, O.: In the wild: Google can’t close the door on android malware |
check point blog. http://blog.checkpoint.com/2016/04/22/in-the-wild-google-
cant-close-the-door-on-android-malware/ (2016)

[16] Kruegel, C.: Full system emulation: Achieving successful automated dynamic
analysis of evasive malware

[17] Mobile, N.: Fee-deduction malware targeting android devices spotted in the
wild. https://www.netqin.com/en/security/newsinfo42021 .html (2011), accessed:
2017-06-08

[18] Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy.
pp. 231–245. SP ’07, IEEE Computer Society, Washington, DC, USA (2007), http:
//dx.doi.org/10.1109/SP.2007.17

[19] Mourad, H.: Sleeping your way out of the sandbox. SANS Institute InfoSec
Reading Room (2015)

[20] Musil, S.: Malware went undiscovered for weeks on google play (2012),
https://www.cnet.com/news/malware-went-undiscovered-for-weeks-on-
google-play/

[21] Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Corbetta, J., Kirat, D., Kruegel,
C., Vigna, G.: Baredroid: Large-scale analysis of android apps on real devices. In:
Proceedings of the 31st Annual Computer Security Applications Conference. pp.
71–80. ACM (2015)

[22] Oberheide, J., Miller, C.: Dissecting the android bouncer. https://duo.com/blog/
dissecting-androids-bouncer (2012), accessed: 2017-06-08

[23] Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: Hindering dynamic analysis of Android malware.
In: Proceedings of the Seventh European Workshop on System Security. pp. 5:1–
5:6. EuroSec ’14, ACM, New York, NY, USA (2014), http://doi.acm.org/10.1145/
2592791.2592796

[24] Rasthofer, S., Arzt, S., Miltenberger, M., Bodden, E.: Harvesting runtime values
in android applications that feature anti-analysis techniques. In: NDSS (2016)

[25] Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation
technique to automatically reconstruct android malware behaviors. In: Proceed-
ings of the 6th European Workshop on System Security (EUROSEC). Prague,
Czech Republic (April 2013)

[26] Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on selected areas in communications 21(1), 5–19 (2003)

[27] Singh, A., Bu, Z.: Hot knives through butter: Evading file-based sandboxes. Threat
Research Blog (2013)

[28] Smaragdakis, Y., Balatsouras, G., Kastrinis, G., Bravenboer, M.: More Sound Static
Handling of Java Reflection, pp. 485–503. Springer International Publishing,
Cham (2015), http://dx.doi.org/10.1007/978-3-319-26529-226

[29] Strazzere, T.: Security alert: Malware found targeting custom ROMs
(jSMSHider). https://blog.lookout.com/blog/2011/06/15/security-alert-malware-
found-targeting-custom-roms-jsmshider/ (2017)

[30] Vidas, T., Christin, N.: Evading Android runtime analysis via sandbox detection.
In: Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security. pp. 447–458. ASIA CCS ’14, ACM, New York, NY, USA
(2014), http://doi.acm.org/10.1145/2590296.2590325

[31] Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on ios: When benign apps
become evil. In: Usenix Security. vol. 13 (2013)

[32] web: APKTool - a tool for reverse engineering android apk files. https://
ibotpeaches.github.io/Apktool/, accessed: 2017-06-08

[33] web: VirusTotal - free online virus, malware and url scanner. https://
www.virustotal.com/, accessed: 2017-06-08

[34] web: ASM kernel description. http://asm.objectweb.org/ (2017), accessed: 2017-
06-08

[35] web: Dila - dynamic load-time instrumentation library for java. http://
wala.sourceforge.net/wiki/index.php/GettingStarted:wala.dila (2017), accessed:
2017-06-08

[36] web: WALA - T.J. Watson libraries for analysis. http://wala.sourceforge.net/
(2017), accessed: 2017-06-08

[37] Weichselbaum, L., Neugschwandtner, M., Lindorfer, M., Fratantonio, Y., van der
Veen, V., Platzer, C.: Andrubis: Android malware under the magnifying glass.
Vienna University of Technology, Tech. Rep. TRISECLAB-0414 1, 5 (2014)

[38] Yang, W., Xiao, X., Andow, B., Li, S., Xie, T., Enck, W.: Appcontext: Differentiating
malicious and benign mobile app behaviors using context. In: Proceedings of
the 37th International Conference on Software Engineering - Volume 1. pp.
303–313. ICSE ’15, IEEE Press, Piscataway, NJ, USA (2015), http://dl.acm.org/
citation.cfm?id=2818754.2818793

[39] Zhauniarovich, Y., Ahmad, M., Gadyatskaya, O., Crispo, B., Massacci, F.: StaDynA:
Addressing the problem of dynamic code updates in the security analysis of
android applications. In: Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy. pp. 37–48. CODASPY ’15, ACM (2015), http:
//doi.acm.org/10.1145/2699026.2699105

[40] Zhou, Y., Jiang, X.: An analysis of the anserverbot trojan (2011)

A EVADROID 1.0 TEST SUITE DETAILS

We split the tests in categories. As part of the test suite, we also
include scripts for handling logs and documentation on expected
behavior when the conditions are met or not.
Abnormal Setting

installedApps: Fetches the list of installed apps with getPack
ageManager and checks if com.android.development is among
them. It does not trigger the payload if it is installed.

uptime: It triggers the payload only when the application is
launched in a system that have been running for more than 4 hours.
It calls uptimeMillis() for detecting the uptime of the system.
Analysis Detection

adbEnable: It uses Settings.Global.ADB_ENABLED to detect
if Android Debug Bridge (ADB) is enabled and triggers the payload
when it is not.

adbPortDetector: It parses the file /proc/net/tcp to detect
if there is an open port between 5555 and 5585 port number. These
ports are used by the ADB daemon.

signatureVerification: Inspired by AnserverBot [40], checks
if the app was repacked by checking the signature.
Emulator Constants Vidas and Christin[30] suggested a set of
constants to detect an emulated host environment. The tests co
nstantCalls1, constantCalls2, constants1, and constants
2 check for these constants to avoid the execution of the payload
under emulated conditions.

constantCalls1: It checks for the following TelephonyMana
ger methods: getDeviceId(), getSimSerialNumber(), and ge
tSubscriberId(). They return well-known constants in most of
the emulators.

constantCalls2: It checks for the following TelephonyMana
ger methods: getLine1Number() and getVoiceMailNumber().
They return well-known constants in most of the emulators.

constants1: It checks for Build.MANUFACTURER, Build.SERI
AL, Build.BOARD, and Build.HARDWARE. These are well-defined
constants in most of the emulators.

constants2: It checks for Build.MODEL, Build.PRODUCT, Bu
ild.BRAND, Build.DEVICE, and Build.FINGERPRINT. These are
well-defined constants in most of the emulators.

http://dx.doi.org/10.1007/978-3-540-30579-8_23
http://dx.doi.org/10.1007/978-3-540-30579-8_23
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
http://doi.acm.org/10.1145/356651.356652
https://www.csc.ncsu.edu/faculty/jiang/DroidCoupon/
https://www.csc.ncsu.edu/faculty/jiang/DroidCoupon/
http://www.jefftk.com/icdiff
http://www.jefftk.com/icdiff
http://doi.acm.org/10.1145/2810103.2813642
http://dl.acm.org/citation.cfm?id=2671225.2671244
http://doi.acm.org/10.1145/2046707.2046740
http://blog.checkpoint.com/2016/04/22/in-the-wild-google-cant-close-the-door-on-android-malware/
http://blog.checkpoint.com/2016/04/22/in-the-wild-google-cant-close-the-door-on-android-malware/
https://www.netqin.com/en/security/newsinfo_4202_1.html
http://dx.doi.org/10.1109/SP.2007.17
http://dx.doi.org/10.1109/SP.2007.17
https://www.cnet.com/news/malware-went-undiscovered-for-weeks-on-google-play/
https://www.cnet.com/news/malware-went-undiscovered-for-weeks-on-google-play/
https://duo.com/blog/dissecting-androids-bouncer
https://duo.com/blog/dissecting-androids-bouncer
http://doi.acm.org/10.1145/2592791.2592796
http://doi.acm.org/10.1145/2592791.2592796
http://dx.doi.org/10.1007/978-3-319-26529-2_26
https://blog.lookout.com/blog/2011/06/15/security-alert-malware-found-targeting-custom-roms-jsmshider/
https://blog.lookout.com/blog/2011/06/15/security-alert-malware-found-targeting-custom-roms-jsmshider/
http://doi.acm.org/10.1145/2590296.2590325
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.virustotal.com/
https://www.virustotal.com/
http://asm.objectweb.org/
http://wala.sourceforge.net/wiki/index.php/GettingStarted:wala.dila
http://wala.sourceforge.net/wiki/index.php/GettingStarted:wala.dila
http://wala.sourceforge.net/
http://dl.acm.org/citation.cfm?id=2818754.2818793
http://dl.acm.org/citation.cfm?id=2818754.2818793
http://doi.acm.org/10.1145/2699026.2699105
http://doi.acm.org/10.1145/2699026.2699105

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Luciano Bello and Marco Pistoia

constantsDLC: Dynamically loads the constants1.apk and
runs it. It behaves as constants1.

divById: Divides 1 for the sum of the integer representation of
each char in getDeviceId(). In many emulators, this sum should
be 0, and the payload is triggered only in cases where the Arithm
eticException is not thrown.

qemuFingerprinting: Petsas et al. [23] described a set of heuris-
tics to detect an emulated host environment. One of them is the
so-called xFlowH heuristic, which checks for constants in QEMU
VM. This test runs that heuristic. The native library libbt_detec
t2.so was provided by the authors of the mentioned paper.
Network

getIpAddress: Only triggers the payloadwhen the app is started
on a devices with an IP different to 0.0.0.0. The IP is fetched with g
etIpAddress() (from WifiInfo).

procNetTcp: One of the heuristics from Petsas [23] is netH,
which tests for typical emulator network setting in /proc/net
/tcp.

Sensors Vidas and Christin [30] suggested monitoring changes
in the battery to detect an emulated host environment. The tests b
atteryCharging, batteryFull, and batteryStatus do this.

accelH: Inspired by Petsas et al. [23], it triggers the payload
when the device is shaken.

batteryCharging: It uses BatteryManager.EXTRA_STATUS to
detect when the battery is full and only triggers the payload in such
an event.

batteryFull: It uses BatteryManager.EXTRA_STATUS to de-
tect if the device is charging. Since, by default, most of the emulators
simulated charging devices, it triggers the payload when the status
is not charging.

batteryStatus: It detects fluctuation (charging or discharging)
in the battery load. Since, in general, emulators do not simulate
these fluctuations, it only triggers the payload when they occur.
Time

atNight: Inspired by Yang et al. [38], this test triggers its
payload when the app is started between 11pm and 5am.

longAction: This test triggers the payload in a thread (to avoid
blocking the UI thread) after reading all the accessible files and
coping their content in /dev/null. This action is I/O expensive
and takes several minutes.

postDelayed: This test triggers the payload in a thread (to avoid
blocking the UI thread) after waiting 30 minutes. It uses postDela
yed().

sleep: This test triggers the payload in a thread (to avoid block-
ing the UI thread) after waiting 30 minutes. It uses sleep.

B SOURCES FORWALA

Methods:

Landroid/content/Context.getPackageManager()Landroid/content/pm/Pack
ageManager;
Landroid/content/Context.getSharedPreferences(Ljava/lang/String;I)La
ndroid/content/SharedPreferences;
Landroid/telephony/TelephonyManager.getDeviceId()Ljava/lang/String;
Landroid/telephony/TelephonyManager.getSimSerialNumber()Ljava/lang/S
tring;
Landroid/telephony/TelephonyManager.getSubscriberId()Ljava/lang/Stri
ng;
Landroid/telephony/TelephonyManager.getCellLocation()Landroid/teleph
ony/CellLocation;
Landroid/telephony/TelephonyManager.getLine1Number()Ljava/lang/Strin
g;
Landroid/telephony/TelephonyManager.getCellLocation()Landroid/teleph
ony/CellLocation;

Landroid/telephony/TelephonyManager.getNeighboringCellInfo()Ljava/ut
il/List;
Ljava/lang/System.loadLibrary(Ljava/lang/String;)V
Ljava/lang/System.currentTimeMillis()J
Landroid/os/SystemClock.uptimeMillis()J
Landroid/os/SystemClock.elapsedRealtime()J
Landroid/os/SystemClock.elapsedRealtimeNanos()J
Landroid/location/LocationManager.getLastKnownLocation(Ljava/lang/St
ring;)Landroid/location/Location;
Landroid/location/LocationManager.isProviderEnabled(Ljava/lang/Strin
g;)Z
Landroid/location/LocationManager.requestLocationUpdates(Ljava/lang/
String;JFLandroid/location/LocationListener;)V
Landroid/content/Intent.getIntExtra(Ljava/lang/String;I)I
Landroid/content/Intent.getIntArrayExtra(Ljava/lang/String;)[I
Landroid/content/Intent.getAction()Ljava/lang/String;
Landroid/content/Intent.getBooleanArrayExtra(Ljava/lang/String;)[Z
Landroid/content/Intent.getBooleanExtra(Ljava/lang/String;Z)Z
Landroid/content/Intent.getBundleExtra(Ljava/lang/String;)Landroid/o
s/Bundle;
Ljava/lang/System.nanoTime()J
Ljava/util/Calendar.getTime()Ljava/util/Date;
Ljava/util/Calendar.getTimeInMillis()J
Ljava/util/Date.<init>()V
Landroid/net/ConnectivityManager.getActiveNetworkInfo()Landroid/net/
NetworkInfo;
Landroid/net/ConnectivityManager.getNetworkInfo()Landroid/net/Networ
kInfo;
Landroid/net/ConnectivityManager.getAllNetworkInfo()[Landroid/net/Ne
tworkInfo;
Landroid/net/ConnectivityManager.getAllNetworks()[Landroid/net/Netwo
rkInfo;
Ljava/net/NetworkInterface.getInetAddresses()Ljava/util/Enumeration;
Landroid/net/wifi/WifiInfo.getIpAddress()I
Landroid/net/NetworkInfo.isConnectedOrConnecting()Z
Landroid/net/wifi/WifiManager.isWifiEnabled()Z
Landroid/net/wifi/WifiManager.getConnectionInfo()Landroid/net/wifi/W
ifiInfo;
Landroid/content/Context.getSystemService(Ljava/lang/String;)Ljava/l
ang/Object;

Fields:

Landroid/os/BatteryManager.EXTRA_STATUS:Ljava/lang/String;
Landroid/os/Build.MANUFACTURER:Ljava/lang/String;
Landroid/os/Build.BRAND:Ljava/lang/String;
Landroid/os/Build/VERSION.SDK:Ljava/lang/String;
Landroid/os/Build.HARDWARE:Ljava/lang/String;
Landroid/os/Build.FINGERPRINT:Ljava/lang/String;
Landroid/os/Build.MODEL:Ljava/lang/String;
Landroid/os/Build.PRODUCT:Ljava/lang/String;
Landroid/os/Build.SERIAL:Ljava/lang/String;
Landroid/os/Build.USER:Ljava/lang/String;
Landroid/os/Build.CPU_ABI:Ljava/lang/String;
Landroid/os/Build.CPU_ABI2:Ljava/lang/String;
Landroid/os/Build.BOARD:Ljava/lang/String;
Landroid/os/Build.DEVICE:Ljava/lang/String;
Landroid/os/Build.HOST:Ljava/lang/String;
Landroid/os/Build.ID:Ljava/lang/String;
Landroid/os/Build.DISPLAY:Ljava/lang/String;
Landroid/os/Build.TYPE:Ljava/lang/String;
Landroid/os/Build.TAGS:Ljava/lang/String;
Landroid/content/pm/PackageInfo.signatures:[Landroid/content/pm/Sign
ature;
Landroid/hardware/SensorEvent.values:[F
Ljava/util/Calendar.HOUR_OF_DAY:I
Ljava/util/Calendar.DATE:I
Ljava/util/Calendar.MONTH:I
Ljava/util/Calendar.YEAR:I
Ljava/util/Calendar.DAY_OF_WEEK:I
Ljava/util/Calendar.SECOND:I
Ljava/util/Calendar.MINUTE:I

Constants:

"/proc/net/tcp"
"adb_enabled"
"debug_app"
"development_settings_enabled"
"device_provisioned"
"http_proxy"
"wait_for_debugger"
"samsung"
"89014103211118510720"
"310260000000000"

Ares: Triggering Payload of Evasive Android Malware MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

"15552175049"
"15555215554"
"310260"
"android.net.conn.CONNECTIVITY_CHANGE"
"android.intent.action.BOOT_COMPLETED"
"android.provider.Telephony.SMS_RECEIVED"
"android.intent.extra.PHONE_NUMBER"
"android.intent.action.NEW_OUTGOING_CALL"
"android.intent.action.RUN"
"android.intent.action.DELETE"
"android.intent.action.VIEW"
"android.intent.action.PHONE_STATE"
"android.intent.action.PACKAGE_ADDED"
"android.intent.action.PACKAGE_REMOVED"
"android.intent.action.PACKAGE_CHANGED"
"android.intent.action.PACKAGE_REPLACED"
"android.intent.action.PACKAGE_RESTARTED"
"android.intent.action.PACKAGE_INSTALL"

C SINKS FORWALA

Opcode(args) hex (dec) Meaning
ifeq(v) 0x99 (153) v = 0
ifne(v) 0x9A (154) v , 0
iflt(v) 0x9B (155) v < 0
ifge(v) 0x9C (156) v >= 0
ifgt(v) 0x9D (157) v > 0
ifle(v) 0x9E (158) v <= 0

if_icmpeq(i1,i2) 0x9F (159) i1 = i2
if_icmpne(i1,i2) 0xA0 (160) i1 , i2
if_icmplt(i1,i2) 0xA1 (161) i1 < i2
if_icmpge(i1,i2) 0xA2 (162) i1 >= i2
if_icmpgt(i1,i2) 0xA3 (163) i1 > i2
if_icmple(i1,i2) 0xA4 (164) i1 <= i2
if_acmpeq(r1,r2) 0xA5 (165) r1 = r2
if_acmpne(r1,r2) 0xA6 (166) r1 , r2

ifnull(r) 0xC6 (198) r = null
ifnonull(r) 0xC7 (199) r , null

D SLEEP FUNCTIONS (METHODS)

android/os/Handler.postDelayed(Ljava/lang/Runnable;J)Z
java/lang/Thread.sleep(J)V
android/os/SystemClock.sleep(J)V
java/lang/Object.wait(J)V
java/util/concurrent/TimeUnit.sleep(J)V

E TRIGGERING DETAILS IN THE ANALYSED

MALWARE

The appendix details the conditions in which the analyzed malware
from Section 3.3 trigger the payload.

Android.Spy.277.origin In the iteration 109 the malware down-
loads a malicious APK from a remote location. This iteration simul-
taneously flips 3 EPCs: the 59th conditional in com/sweet/rang
ermob/b/e.a([Ljava/lang/String;)Ljava/lang/String;, the
17th in com/sweet/rangermob/xser/RangerSer$13.a(Lorg/js
on/JSONObject;)V and the first one in com/sweet/rangermob/h
elper/j.ae(Landroid/content/Context;)I.

AnserverBot In the iteration 34 the malware connects to a re-
mote C&C host. This iteration simultaneously flips 3 EPCs: the 2nd
conditional in com/sec/android/providers/drm/European.a(
Ljava/lang/String;)V, the 1st in com/android/view/custom/
BaseABroadcastReceiver.onReceive(Landroid/content/Con
text;Landroid/content/Intent;)V and the 11th in com/sec/a
ndroid/providers/drm/Onion.a(Landroid/content/Context
;Landroid/content/Intent;Landroid/content/BroadcastRe
ceiver;Ljava/io/FileDescriptor;Ljava/lang/String;)Z.

The signature check of the package is done by com/sec/and
roid/providers/drm/Union.class, which is invoked from the
mentioned onReceive.
Banker-IR In the iteration 20 the malware attempts to change
the default SMS application. This iteration simultaneously flips 2
EPCs: the 1st conditional in jgywwv/jvyjsd/sordvd/Activity1.
onCreate(Landroid/os/Bundle;)V and the 1st conditional in jg
ywwv/jvyjsd/sordvd/AlarmReceiverSmsMan.onReceive(Land
roid/content/Context;Landroid/content/Intent;)V

BaseBridge In the iteration 14 the malware connects to a remote
C&C host. This iteration simultaneously flips 3 EPCs: the 8th con-
ditional in com/android/battery/a/sx.a()Z and the first ones
in com/android/battery/a/aq.b(Landroid/content/Context
;)Z and com/android/battery/BaseBroadcastReceiver.onRe
ceive(Landroid/content/Context;Landroid/content/Inten
t;)V.
Deng.KJF In the iteration 20 the malware connects to a remote
host and leaks personal information. This iteration flips a single
EPC: the 2nd conditional in com/umeng/analytics/b.a(Landro
id/content/Context;Landroid/content/SharedPreferences
;)V

DroidCoupon In the iteration 68 the malware unpacks a exploit.
This iteration simultaneously flips 2 EPCs: the 2nd conditional in c
n/buding/coupon/core/loaddata/c.a(Landroid/content/Co
ntext;)V and the 4th in cn/buding/coupon/core/SystemServi
ce.onStart(Landroid/content/Intent;I)V.
Fakemart In the iteration 2 the malware unpacks a exploit. This
iteration flips a single EPC: the 1st conditional in com/android/b
lackmarket/BlackMarketAlpha.onCreate(Landroid/os/Bund
le;)V.
JSmsHider In the iteration 4 the malware connects to svr.xms
tsv.com:80. This iteration flips a single EPC: the 1st conditional in
com/AudioConsole/AudioConsole.Reportresult(Ljava/lang
/String;)V. is flipped (in iteration 4), the connection to is exposed.

In the iteration 18 the malware attempts to connect to 10.0.0.
172:80. This iteration flips a single EPC: the 1st conditional in c
om/AudioConsole/SocketHttpRequester.ApachedoPost(Land
roid/content/Context;Ljava/lang/String;Ljava/util/Map
;Ljava/lang/String;)[B.
SmsReg A total of 7 APKs are fetch from the host dl.elevensk
y.net, flipping several combinations of EPCs.

In the iteration 6 the malware downloads the first two APKs:
wKhklVVtdKOAVv5IAAFBG_mUhK4571.apk14 and wKhklVfjO2-AG
UmHAAcw93GVdqc073.apk15. This iteration flips simultaneously 2
EPCs: the 1st conditional in com/adr/yykbplayer/aa.isNetwor
kConnected()Z and the 3rd in com/adr/yykbplayer/aa.showTi
me()V.

In iteration 8 the malware downloads two new APKs: wKhklFe
hVYyAAY6fAACrUW6FC_M627.apk16 and wKhklFfjO1eAIO3FAALK
lEzyYks334.apk17. This iteration flips simultaneously 2 EPCs: the
1st conditional in com/adr/yykbplayer/aa.onCreate(Landroi
d/os/Bundle;)V and the 3rd in com/adr/yykbplayer/aa.showT
ime()V.

14 9ec72143fc0236bc0308d937f98ec117c525c96430d8050081b60a880a72bbaa
15 e36567e82cb1a703f083cae744c165b56c90f2d40d067888b3ff9dc44dc2d10d
16 f116af210ce69116f25c5513ff811affbcf0ae5a977d8e95498e6c2ad479e9b1
17 f9861e8396c40d3c0edf32e1bc7b03258e5436bbca7e8cf15d0761605ee5f342

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden Luciano Bello and Marco Pistoia

In iteration 36 the malware downloads two new APKs: wKhklFe
Vx_eAGgbeAADsl9ji_ZY770.apk18 and wKhklFfY5N-AJy5SAARf
CO2-O7s446.apk19 This iteration flips simultaneously 3 EPCs: the
very same two mentioned in the iteration 6 and the 10th conditional
in com/skymobi/pay/newsdk/util/PluginLoader.a(Ljava/la
ng/String;)Ljava/lang/String.

In iteration 42, the last APK is download: wKhklVaDLdCANW
hcAASZJ-KJAx0897.apk20 This iteration flips simultaneously 3
EPCs: the very same two mentioned in the iteration 6 and the 7th
conditional in com/skymobi/pay/newsdk/util/PluginLoader.
a(Ljava/lang/String;)Ljava/lang/String;.

18 c4a8a02e900f4fb066a0e8d4c9e2976c9a0f252729058b2915fdc93eae65af49
19 50a7e5196d113ecb12760aadc200573278fb083732d077667625c6f78f678614
20 45d9ed5bfd5898d2426cfad9947c79fd41db6deb05bb0fb97f00e979d1d10804

	Abstract
	1 Introduction
	2 Description of the System
	2.1 General Description
	2.2 An Ad-hoc Running Environment
	2.3 Optimizations and Enhancements

	3 Instantiation of the System: Ares
	3.1 Implementation and Evaluation Settings
	3.2 Evadroid 1.0 Test Suite Evaluation
	3.3 Ares against Real Malware
	3.4 Performance

	4 Limitations and threats to validity
	4.1 The Considered Running Environments
	4.2 Static Analysis Incompleteness
	4.3 Delays by Stalling Code
	4.4 Imprecise Modeling and Breaking the Invariant

	5 Related Work
	5.1 Similar Ideas on x86
	5.2 Stimulus-based Malware Detection
	5.3 Delay-based Evasion

	6 Conclusion and Future Work
	7 Availability
	References
	A Evadroid 1.0 test suite details
	B Sources for WALA
	C Sinks for WALA
	D Sleep functions (Methods)
	E Triggering details in the analysed malware

